Search results for "Hardy space"
showing 10 items of 19 documents
Vector-Valued Hardy Spaces
2019
Given a Banach space X, we consider Hardy spaces of X-valued functions on the infinite polytorus, Hardy spaces of X-valued Dirichlet series (defined as the image of the previous ones by the Bohr transform), and Hardy spaces of X-valued holomorphic functions on l_2 ∩ B_{c0}. The chapter is dedicated to study the interplay between these spaces. It is shown that the space of functions on the polytorus always forms a subspace of the one of holomorphic functions, and these two are isometrically isomorphic if and only if X has ARNP. Then the question arises of what do we find in the side of Dirichlet series when we look at the image of the Hardy space of holomorphic functions. This is also answer…
Hardy Spaces of Dirichlet Series
2019
Norm estimates for operators from Hp to ℓq
2008
Abstract We give upper and lower estimates of the norm of a bounded linear operator from the Hardy space H p to l q in terms of the norm of the rows and the columns of its associated matrix in certain vector-valued sequence spaces.
Inner functions and local shape of orthonormal wavelets
2011
Abstract Conditions characterizing all orthonormal wavelets of L 2 ( R ) are given in terms of suitable orthonormal bases (ONBs) related with the translation and dilation operators. A particular choice of the ONBs, the so-called Haar bases, leads to new methods for constructing orthonormal wavelets from certain families of Hardy functions. Inner functions and the corresponding backward shift invariant subspaces articulate the structure of these families. The new algorithms focus on the local shape of the wavelet.
${\cal H}^1$ -estimates of Jacobians by subdeterminants
2002
Let $f:\Omega \rightarrow{\Bbb R}^n$ be a mapping in the Sobolev space $W^{1,n-1}_{loc}(\Omega,{\Bbb R}^n), n\geq 2$ . We assume that the cofactors of the differential matrix Df(x) belong to $L^\frac{n}{n-1}(\Omega)$ . Then, among other things, we prove that the Jacobian determinant detDf lies in the Hardy space ${\cal H}^1(\Omega)$ .
Hardy-Orlicz Spaces of conformal densities
2014
We define and prove characterizations of Hardy-Orlicz spaces of conformal densities.
Hardy spaces and quasiconformal maps in the Heisenberg group
2023
We define Hardy spaces $H^p$, $00$ such that every $K$-quasiconformal map $f:B \to f(B) \subset \mathbb{H}^1$ belongs to $H^p$ for all $0<p<p_0(K)$. Second, we give two equivalent conditions for the $H^p$ membership of a quasiconformal map $f$, one in terms of the radial limits of $f$, and one using a nontangential maximal function of $f$. As an application, we characterize Carleson measures on $B$ via integral inequalities for quasiconformal mappings on $B$ and their radial limits. Our paper thus extends results by Astala and Koskela, Jerison and Weitsman, Nolder, and Zinsmeister, from $\mathbb{R}^n$ to $\mathbb{H}^1$. A crucial difference between the proofs in $\mathbb{R}^n$ and $\mathbb{…
Some Aspects of Vector-Valued Singular Integrals
2009
Let A, B be Banach spaces and \(1 < p < \infty. \; T\) is said to be a (p, A, B)- CalderoLon–Zygmund type operator if it is of weak type (p, p), and there exist a Banach space E, a bounded bilinear map \(u: E \times A \rightarrow B,\) and a locally integrable function k from \(\mathbb{R}^n \times \mathbb{R}^n \backslash \{(x, x): x \in \mathbb{R}^n\}\) into E such that $$T\;f(x) = \int u(k(x, y), f(y))dy$$ for every A-valued simple function f and \(x \notin \; supp \; f.\)
Modulus of continuity with respect to semigroups of analytic functions and applications
2016
Abstract Given a complex Banach space E , a semigroup of analytic functions ( φ t ) and an analytic function F : D → E we introduce the modulus w φ ( F , t ) = sup | z | 1 ‖ F ( φ t ( z ) ) − F ( z ) ‖ . We show that if 0 α ≤ 1 and F belongs to the vector-valued disc algebra A ( D , E ) , the Lipschitz condition M ∞ ( F ′ , r ) = O ( ( 1 − r ) 1 − α ) as r → 1 is equivalent to w φ ( F , t ) = O ( t α ) as t → 0 for any semigroup of analytic functions ( φ t ) , with φ t ( 0 ) = 0 and infinitesimal generator G , satisfying that φ t ′ and G belong to H ∞ ( D ) with sup 0 ≤ t ≤ 1 ‖ φ ′ ‖ ∞ ∞ , and in particular is equivalent to the condition ‖ F − F r ‖ A ( D , E ) = O ( ( 1 − r ) α ) as r …
Some Remarks on the Spectral Properties of Toeplitz Operators
2019
In this paper, we study some local spectral properties of Toeplitz operators $$T_\phi $$ defined on Hardy spaces, as the localized single-valued extension property and the property of being hereditarily polaroid.